Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Environ Change ; 83: 102765, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130391

RESUMO

Public perception of emerging climate technologies, such as greenhouse gas removal (GGR) and solar radiation management (SRM), will strongly influence their future development and deployment. Studying perceptions of these technologies with traditional survey methods is challenging, because they are largely unknown to the public. Social media data provides a complementary line of evidence by allowing for retrospective analysis of how individuals share their unsolicited opinions. Our large-scale, comparative study of 1.5 million tweets covers 16 GGR and SRM technologies and uses state-of-the-art deep learning models to show how attention, and expressions of sentiment and emotion developed between 2006 and 2021. We find that in recent years, attention has shifted from general geoengineering themes to specific GGR methods. On the other hand, there is little attention to specific SRM technologies and they often coincide with conspiracy narratives. Sentiments and emotions in GGR tweets tend to be more positive, particularly for methods perceived to be natural, but are more negative when framed in the geoengineering context.

2.
Diabetes ; 70(9): 1985-1999, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34226282

RESUMO

Adipose tissue (AT) is a key metabolic organ which functions are rhythmically regulated by an endogenous circadian clock. Feeding is a "zeitgeber" aligning the clock in AT with the external time, but mechanisms of this regulation remain largely unclear. We tested the hypothesis that postprandial changes of the hormone insulin directly entrain circadian clocks in AT and investigated a transcriptional-dependent mechanism of this regulation. We analyzed gene expression in subcutaneous AT (SAT) of obese subjects collected before and after the hyperinsulinemic-euglycemic clamp or control saline infusion (SC). The expressions of core clock genes PER2, PER3, and NR1D1 in SAT were differentially changed upon insulin and saline infusion, suggesting insulin-dependent clock regulation. In human stem cell-derived adipocytes, mouse 3T3-L1 cells, and AT explants from mPer2Luc knockin mice, insulin induced a transient increase of the Per2 mRNA and protein expression, leading to the phase shift of circadian oscillations, with similar effects for Per1 Insulin effects were dependent on the region between -64 and -43 in the Per2 promoter but not on CRE and E-box elements. Our results demonstrate that insulin directly regulates circadian clocks in AT and isolated adipocytes, thus representing a primary mechanism of feeding-induced AT clock entrainment.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Insulina/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 115(8): E1916-E1925, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29432155

RESUMO

The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1-/- animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver.


Assuntos
Relógios Circadianos , Regulação da Expressão Gênica , Fígado/metabolismo , Camundongos/genética , RNA Mensageiro/genética , Animais , Masculino , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Transcrição Gênica
5.
Cell Mol Life Sci ; 73(3): 497-521, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26496725

RESUMO

Circadian clocks synchronize organisms to the 24 h rhythms of the environment. These clocks persist under constant conditions, have their origin at the cellular level, and produce an output of rhythmic mRNA expression affecting thousands of transcripts in many mammalian cell types. Here, we review the charting of circadian output rhythms in mRNA expression, focusing on mammals. We emphasize the challenges in statistics, interpretation, and quantitative descriptions that such investigations have faced and continue to face, and outline remaining outstanding questions.


Assuntos
Relógios Circadianos/genética , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Modelos Genéticos , Processamento Pós-Transcricional do RNA
6.
Cell Rep ; 9(2): 741-51, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25373909

RESUMO

The rich mammalian cellular circadian output affects thousands of genes in many cell types and has been the subject of genome-wide transcriptome and proteome studies. The results have been enigmatic because transcript peak abundances do not always follow the peaks of gene-expression activity in time. We posited that circadian degradation of mRNAs and proteins plays a pivotal role in setting their peak times. To establish guiding principles, we derived a theoretical framework that fully describes the amplitudes and phases of biomolecules with circadian half-lives. We were able to explain the circadian transcriptome and proteome studies with the same unifying theory, including cases in which transcripts or proteins appeared before the onset of increased production rates. Furthermore, we estimate that 30% of the circadian transcripts in mouse liver and Drosophila heads are affected by rhythmic posttranscriptional regulation.


Assuntos
Ritmo Circadiano , Modelos Biológicos , Proteoma/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transcriptoma , Animais , Drosophila/genética , Camundongos , Proteoma/genética , Processamento Pós-Transcricional do RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...